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ABSTRACT

An unstructured finite volume procedure has been developed for steady and transient

thermo-fluid dynamic analysis of fluid systems and components. The procedure is

applicable for a flow network consisting of pipes and various fittings where flow is

assumed to be one dimensional. It can also be used to simulate flow in a component by

modeling a multi-dimensional flow using the same numerical scheme. The flow domain

is discretized into a number of interconnected control volumes located arbitrarily in

space. The conservation equations for each control volume account for the transport of

mass, momentum and entropy from the neighboring control volumes. In addition, they

also include the sources of each conserved variable and time dependant terms. The source

term of entropy equation contains entropy generation due to heat transfer and fluid

friction. Thermodynamic properties are computed from the equation of state of a real

fluid. The system of equations is solved by a hybrid numerical method which is a

combination of simultaneous Newton-Raphson and successive substitution schemes. The

paper also describes the application and verification of the procedure by comparing its

predictions with the analytical and numerical solution of several benchmark problems.
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Specific Heat Ratio

Time Step (see)

Time (sec)

INTRODUCTION

A numerical procedure capable of modeling fluid flow :for both systems and components

is of significant importance in aerospace and many other engineering industries.

Although separate numerical methods are available for performing system and

component analysis, there are not many attempts t(> develop an unified procedure

applicable to both systems and components. Hardy Cro,_s _ developed a numerical method

for calculating flow and pressure distribution in a flow network. This method has been

widely used in modeling water distribution systems in municipalities. The Hardy Cross

method assumes an equilibrium between pressure arid friction forces in steady and

incompressible flow. As a result it has not been successfully used in unsteady and

compressible flow calculations where inertia force is important.

Patankar and Spalding 2 developed a finite volume procedure to solve for Navier-Stokes

equations in a structured co-ordinate system. Since the publication of the original paper in

1972, there have been several developments reported to improve the numerical

performance of the original algorithm. Several general purpose computer programs that

have been developed based on these procedures, are increasingly being used for
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component analysis. However, very few applications of the finite volume method have

been reported for system analysis. Datta and Majumdar 3 used this solution algorithm to

develop a calculation procedure for manifold flow systems. However, this procedure can

not be used for simulating a flow network due to its dependence on a structured co-

ordinate system. The purpose of this paper is to present a finite volume procedure based

on an unstructured co-ordinate system that can be applied to analyze both systems and

components.
MATHEMATICAL FORMULATION

All finite volume procedures require solution of mass, momentum and energy

conservation equations in a flow domain consisting of interconnected control volumes.

For turbulent flows, additional conservation equations of turbulence parameters are

solved to calculate enhanced momentum exchanges due to turbulence. For reactive

flows, specie conservation equations are solved in conjunction with other conservation

equations. The main characteristic features of the present method are the following:

Unstructured Co-ordinate System

A flow domain is resolved into a network consisting of nodes and branches. The nodes

are connected by branches. The nodes are classified into two categories: boundary and

intemal nodes. At a boundary node, pressure and temperature are known; at an internal

node they are computed by solving conservation equations. Each internal node can be

connected with an arbitrary number of internal and boundary nodes. At each node mass

and entropy conservation equations are solved in conjunction with the equation of state.

The momentum conservation equations are solved at all branches. This process of

discretization allows the development of the set of conservation equations in an

unstructured co-ordinate system. A schematic of a typical flow network is shown in

Figure 1.

Legend

--- -J_: .... Branch

Boundary Node

[] Internal Node

,4_- Assumed Branch Flow Direction

z

r'/6 A ii

_r_

Figure 1 - Schematic of a Flow System Consisting of Nodes and Branches
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Viscous Effect

In conventional finite volume procedure, viscous effects are modeled by shear stress,

which is expressed as a product of effective viscosity and local velocity gradient. In

order to calculate the velocity gradient accurately, the finite volume procedure requires a

large number of control volumes. It is not practical to use such a large mesh for a system

level calculation. Therefore, in this method the frictional effect is modeled in the

momentum equation by the following expression:
2

Ap/,_c,o,, = Kf m (1)

where K/ is a function of Reynolds number, density, &-ca and geometry of the branch in

consideration. However for multi-dimensional flows, viscous effects are modeled by

conventional shear stress method.

Thermodynamic Formulation

Entropy is calculated at every node using a second law analysis 4 of the control volume.

The temperature and density at an intemal node are calculated from pressure and entropy

using a modified virial equation of state 5 During each iteration cycle, thermodynamic

properties are calculated to ensure thermodynamic equilibrium prevails during the course

of attaining the solution.

Solution Scheme

The system of equations is solved by a hybrid numerical scheme which is a combination

of the Newton-Raphson and successive substitution schemes. The equations which are

strongly coupled are solved by the Newton-Raphson method. The equations which are

weakly coupled are solved by the successive substitution scheme. The successive

substitution scheme is also used to develop an initial guess for the Newton-Raphson

scheme to ensure numerical stability.

GOVERNING EQUATIONS

Figure 2 displays a schematic showing adjacent nodes, their connecting branches, and the

indexing system used in this paper. In order to solve for the unknown variables, mass and

entropy conservation equations and the equation of thermodynamic state are written for

each internal node and flow rate equations are written for each branch.

Mass Conservation Equation

m++A+ - me

AT

j=n

- _ m+j

j=l
(2)
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Figure 2 - Schematic of Nodes, Branches and Indexing Practice

Equation 2 requires that, for the transient formulation, the net mass flow from a given

node must equate to the rate of change of mass in the control volume. In the steady state

formulation, the left hand side of the equation is zero. This implies that the total mass

flow rate into a node is equal to the total mass flow rate out of the node.

Momentum Conservation Equation

The flow rate in a branch is calculated from the momentum conservation equation

(Equation 3) which represents the balance of fluid forces acting on a given branch. A

typical branch configuration is shown in Figure 3. Inertia, pressure, gravity, friction and

centrifugal forces are considered in the conservation equation. In addition to these five

forces, a source term S has been provided to represent any external momentum sources.

For example, this external momentum source term can be used to model a pump in a flow

system.
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Figure 3 - Schematic of a Branch Showing Gravity and Rotation

(mu,,a,-mu,)+ mij ( uu)--_Uij -- ---
go Ax gc

(pi-pj)A+ pgVcOsogc Kfmij mij

2 2
A + p K_tf2A(rj-ri) +S

2 g_

(3)

The two terms in the left hand side of the momentum equation represent the inertia of the

fluid. The first one is the time dependent term and must be considered for unsteady

calculations. The second term is significant when _ere is a large change in area or

density from branch to branch. The first term in the right hand side of the momentum

equation represents the pressure gradient in the branch. The pressures are located at the

upstream and downstream face of a branch. The second term represents the effect of

gravity. The gravity vector makes an angle (0) with the assumed flow direction vector.

The third term represents the frictional effect. Friction was modeled as a product of Kf

and the square of the flow rate and area. Kf is a function of the fluid density in the branch

and the nature of the flow passage being modeled by tile branch. The calculation of Kf

for different types of flow passages is described later in 1his paper. The fourth term in the

momentum equation represents the effect of the centrifugal force. This term will be

present only when the branch is rotating as shown in Figure 3. If, or is the factor

representing the fluid rotation. I_o ' is unity when the fluid and the surrounding solid
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surface rotates with the same speed. This term also requires a knowledge of the distances

between the upstream and downstream faces of the branch from the axis of rotation.

Entropy Conservation Equation

The entropy conservation equation for node i, shown in Figure 2, can be expressed

mathematically as shown in Equation 4.

(ms)T +aT - (ms)T

Ax

i]} ':nMAx .,- MAX s,+Z
j=l j=l

o,4,

The entropy generation rate due to fluid friction in a branch is expressed as

ID'
S_,j.. = mo Apo,vi_co_ _ K/ mij (4a)

p.T.J puTuJ

Equation 4 shows that for unsteady flow, the rate of increase of entropy in the control

volume is equal to the rate of entropy transport into the control volume plus the rate of

entropy generation in all upstream branches due to fluid friction plus the rate of entropy

added to the control volume due to heat transfer. The MAX operator used in Equation 4

is known as an upwind differencing scheme 2 which has been extensively employed in the

numerical solution of Navier-Stokes equations in convection heat transfer and fluid flow

applications. When the flow direction is not known, this operator allows the transport of

entropy only from its upstream neighbor. In other words, the upstream neighbor

influences its downstream neighbor but not vice versa.

Equation of State

A modified virial equation of state 5 is used to calculate the density from the computed

pressure and temperature at a given node.

i=N j=M

p = Y'_ A,(T)p' + Y'_ Bj(T)9 2j+,e-C.'/r, (5)
i=1 j=l

A i (T) and Bj (T) are polynomials in T and 1/T

This equation was originally developed by Benedict, Webb and Rubin (BWR) and later

modified by Bender 5. This equation was the basis of the computer code GASP developed
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by Hendricks et al 6. This equation enabled PVT calculations to be made in the liquid and

vapor phases. The derived properties of enthalpy and entropy were also obtained. The

present method uses the GASP computer code to compute density and other

thermophysical properties during iterative cycles of computation.

Compressibility Factor

For unsteady flow, resident mass in a control volume is calculated from the

compressibility factor assuming a thermodynamic equilibrium.

pV

m- RTz (6)

The following table shows how each equation is used to calculate the unknown variables

to demonstrate the problem of mathematical closure.

Table 1 - Mathematical Closure

Unknown Available equations to solve
variables

Pressure Mass Conservation Equation (Eqn. 1)

Flow rate Momentum Conservation Equatioll (Eqn. 2)

Temperature Second Law of Thermodynamics (Eqn. 3)

Density Equation of State (Eqn. 4)

Mass (Unsteady Compressibility Factor (Eqn 5)

Flow only)

Multi-Dimensional Flow

Multi-dimensional conservation equations must account for the transport of mass,

momentum and entropy into and out of the control volume from all directions in space.

The scalar transport equations (i. e., mass and entropy conservation equations) can

account for such transport because each internal node can be connected with multiple

neighboring nodes located in space in any arbitrary locefion (Figure 2). Equations 2 and

4 account for the transport of mass and entropy respectively from all directions in space.

On the other hand, the momentum conservation equation (Equation 3) is one

dimensional. Multi-dimensional momentum transport can be accounted for by

incorporating two additional terms in the momentum equation. These terms include: a)

momentum transport due to shear, and b) momenturc_ transport due to the transverse

component of velocity.

These two terms can be identified in the two-dimensional steady state Navier-Stokes

equation which can be expressed as:
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(au a(ouu)a(ovu) (a2u
p_u-_'+ v Oy) - /_x + _y - -_+Pg" +_[_ -F+ Oy2J

(7)

The first term on the left hand side of Equation 7 corresponds to the inertia term in

Equation 3. The second term on the left hand side of Equation 7 corresponds to the

transverse momentum exchange. The first term on the right hand side of Equation 7

corresponds to the pressure term. The second term on the right hand side of Equation 7

corresponds to the gravity term. The third term on the right hand side of the equation is

negligible (based on an order of magnitude argument). The fourth term on the right hand

side corresponds to the friction term in the one dimensional momentum conservation

equation. For multi-dimensional flow friction is modeled by shear force as discussed

below.

Momentum Transport Due to Shear

__

[, AN _]

N
[_ AS "1"1

YN

YS

Figure 4 - Branch and Node Schematic for Shear Exchange

Figure 4 represents a set of nodes and branches for which shear forces are exchanged.

Let branch 12 represent the branch for which the shear force is to be calculated. Branches

N12 and S12 represent the parallel branches which will be used to calculate the shear

force on branch 12. Let YS be the distance between branches 12 and S 12, and let YN be

the distance between branches 12 and N12. Let AS be the shearing area between

branches 12 and S 12, while AN is the shearing area between branches 12 and N 12.

The shear force on a control volume can be expressed as

a 2u Au Au Au

_y AxAz =g_--T V _ p(_i-(AxXAYX&Z)= p g_yA_,_
(8)

The finite volume formulation for shear for the i th branch can be written as:
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u cos0iJui1 iyj UwaikC°S°wikui1_t_. A Br_ohishea_ _ _" Aij + _ Aik (9)
k=l \ Y wall ik

where i is the current branch, np_ is the number of parallel branches to branch i, and ns i is

the number of parallel solid walls to branch i.

Transverse Momentum Transport

The transverse momentum component of Equation 7 can be expressed in terms of a force

per unit volume.

apvu (pvA u)

uy--L-7-"V _ )y----_ (Ax)(A(A y)(A z) = (A x)(A z)(pvAu) = rht,_Au (10)

Figure 5 represents a set of nodes and branches for which transverse momentum

exchange will take place. Let branch 12 represent the current branch which will receive

transverse momentum from the surrounding branches. Branch S 12 represents an adjacent

parallel branch, while branches S 1 and $2 represent the adjacent normal branches.

Figure 5 - Branch and Node Schematic for Transverse Momentum Exchange

The finite volume formulation for transverse momentum for the ith branch can be written

as

_pvu _ _ ui max-)-_ l--miikCOS0ijk , - (UijCOSOij max tilijltCOS0ijk

t_Y jffil k=l [nij k=l [nlj

(11)

Detailed derivation of equation (9) and (11) appear in GI-'SSP User's manual 7

SOLUTION PROCEDURE

In the sample circuit shown in Figure 1, pressures and temperatures are to be calculated

for the 5 internal nodes; flow rates are to be calculated in the 10 branches. The total
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numberof equations can be evaluated from the following relationship: Number of

equations = Number of internal nodes * Number of scalar transport equations + Number

of branches. Therefore, the total number of equations to be solved is 20 (= 5 X 2 + 10).

There is no explicit equation for pressure. The pressures are implicitly computed from

the mass conservation equation (Equation 2). The flow rates are calculated from

Equation 3. The inertia and friction terms are nonlinear in Equation 3. The pressures and

mass flow rates appear in the flow rate equations. The flow rates also appear in the

entropy equation. The governing equations to be solved are strongly coupled and

nonlinear and therefore they must be solved by an iterative method.

There are two types of numerical methods available to solve a set of non-linear coupled

algebraic equations: (1) the successive substitution method and (2) the Newton-Raphson

method. In the successive substitution method, each equation is expressed explicitly to

calculate one variable. The previously calculated variable is then substituted into the

other equations to calculate another variable. In one iterative cycle each equation is

visited. The iterative cycle is continued until the difference in the values of the variables

in successive iterations becomes negligible. The advantages of the successive

substitution method are its simplicity to program and its low code overhead. The main

limitation, however, is finding an optimum order for visiting each equation in the model.

This visiting order, which is called the information flow diagram, is crucial for

convergence. Under-relaxation (partial substitution) of variables is often required to

obtain numerical stability.

In the Newton-Raphson method, the simultaneous solution of a set of non-linear

equations is achieved through an iterative guess and correction procedure. Instead of

solving for the variables directly, correction equations are constructed for all of the

variables. The intent of the correction equations is to eliminate the error in each equation.

The correction equations are constructed in two steps: (1) the residual errors in all of the

equations are estimated and (2) the partial derivatives of all of the equations, with respect

to each variable, are calculated. The correction equations are then solved by the Gaussian

elimination method. These corrections are then applied to each variable, which

completes one iteration cycle. These iterative cycles of calculations are repeated until the

residual error in all of the equations is reduced to a specified limit. The Newton-Raphson

method does not require an information flow diagram. Therefore, it has improved

convergence characteristics. The main limitation to the Newton-Raphson method is its

requirement for a large amount of computer memory.

The present formulation employs a novel numerical scheme, SASS (_Simultaneous

Adjustment with Successive Substitution) which is a combination of the successive

substitution and Newton-Raphson methods. The mass and momentum conservation

equations are solved by the Newton-Raphson method. The entropy conservation

equations are solved by the successive substitution method. The underlying principle for

making such a division was that the equations which are more strongly coupled are

solved by the Newton-Raphson method. The equations which are not strongly coupled
11
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with the othersetof equationsaresolvedby the successivesubstitutionmethod. Thus,
the computer memory requirement can be significantly reducedwhile maintaining
superior numerical convergencecharacteristics. To improve the convergenceand
stability of the numericalscheme,the successivesubstitutionmethodis usedto provide
an initial guessfor pressureand flow rate. Equations2 and 3 are rewritten suchthat
pressuresandflow ratescanbeestimatedat eachnodeandbranch.

In atypicalunsteadycalculation,theSAASprocedureconsistsof thefollowing steps:

1. At the beginningof a new time step, provide the initial solutionof all dependant
variablesin the flow domaine. g. pressure,residentmass,densityandentropyat all
intemalandboundarynodes,flow ratesat all branches.

2. Begin the outer iteration loop; the purposeof this loop is to calculateentropyand
densityat all internalnodesandflow resistancein thebranches.

3. Solve mass conservationequation (Equation 2) in internal nodes, momentum
conservationequation in branches(Equation3) and equationof residentmassin
internalnodes(Equation6) by NewtonRaphsonmethod(Appendix- A ).

4. Solveentropyconservationequationby successivesubstitutionmethod(Appendix-
B)

5. Calculatedensityandtemperaturefrom the equationof statefor calculatedpressure
and entropy at each internal node. Viscosity is also computed from the
thermophysicalpropertycorrelationfor calculatedpressureandtemperature.

6. Calculateflow resistanceparameter(Kf) of eachbr_mch.Kf is a function of density
andviscosity.

7. Calculatethe maximumdifferencein valuesof entropy,densityandflow resistance
parametersbetweensuccessiveiterations. Steps3to 7 constituteoneiterationcycle.

8. Repeat steps 3 to 7 until the maximum difference is less than the specified
convergencecriterion.Steps2 to 8 constituteall operationsrequiredfor onetime step.

9. Repeatsteps1to 8 until final time isreached.

COMPUTER PROGRAM

The numerical procedure described in the previous sections was incorporated into a

general purpose computer program named Generalized ]_luid System Simulation Program

(GFSSP) 7. The computer program has three major pats. The first part consists of the

subroutines for the preprocessor. The preprocessor allows the user to interactively create

the flow network model consisting of nodes and branches. All of the input specifications,

including the boundary conditions, are specified through the preprocessor. The second

major part of the program consists of the subroutines that provide the initial conditions

and then develop and solve all of the conservation equations in the flow network. The

third part of the program consists of the thermodynamic property programs, GASP and

WASP that provide the necessary thermodynamic arid thermophysical property data

required to solve the resulting system of equations.

12
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Figure 6 shows GFSSP's process flow diagram. The user runs the interactive
preprocessorto generatethe input data file. The input data file contains all the
informationnecessaryfor the model. The solver module readsthe input data file and
producesthesolutionin conjunctionwith thethermodynamicpropertyprograms.

Use;

Preprocessor J

Equation _ _ Fluid Property 1Generator - Programs !
..... J

Figure 6 - GFSSP Process Flow Diagram

RESULTS

The feasibility, robustness and verification of the proposed method have been

demonstrated by simulating five example problems. They are:

1. Flow system consisting of a pump, valve and pipe line.
2. Water distribution network.

3. Compressible flow through a converging-diverging nozzle.

4. Blow down of a pressurized tank.

5. Recirculating flow in a square cavity

Example 1 - Flow System Consisting of a Pump, Valve and a Pipe Line

A problem commonly encountered in fluid engineering is to match a pump's

characteristics with the operating system's characteristics. The designer needs to know

the flow rate in the system and the power consumed by the pump. The system considered

for this example is shown in Figure 7.

The fluid system shown in Figure 7 was simulated with a finite volume model consisting

of four nodes and three branches as shown in Figure 8.
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Receiving Reservoir

Pump Valve

Figure 7 - Flow system consisting of a pump, valve and pipe line.

Pump

A, = 30888

B, = -8.067E-04

Supply Reservoir Pump Outlet
P = 14.7 psia Valve Inlet
T = 60*F

Pipe
L= 1500fl

Gate Valve D = 6 in

KI = 1000 _:/D = 0.005

1<2=0.1 00_r a,_ v==,_= 95.74 =

Valve Outlet Receiving Reservoir
Pipe Inlet P = 14.7 psia

T = 60°F

Legend

_ Branch

Boundary Node

_ Internal Node

Figure 8 - Finite volume Model of Flow System Described in Example 1.

Pump Model

The pump was modeled as a momentum source in branch 12. The pump characteristics

were expressed as:

Where:

Ap = A0 +

Ap = Pressure rise, lbf/_

m = Flow rate, lbm/sec

•2

Bom (12)

The momentum source, S, in Equation 3 was then expre,;sed as:
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S=ApA

Valve Model

The resistance in branch 23 representing the valve was computed by the two-K method

ofHooper s. For this option, Kf of Equation 3 was expressed as:

Ki / Re+ K_o(1 + 1 / D)

Kf = 2gcPuA 2 (13)

Where:

K1= K for the fitting at Re = 1;

K _o= K for the fitting at Re = oo;

D = Internal diameter of attached pipe, in.

The constants K I and K oo for common fittings and valves are listed in reference 8.

Pipe Model

The resistance in branch 34 was computed from the friction factor in the pipe line. The

resistance coefficient, Kf. for a pipe with length, L, diameter, D, and surface roughness, e

was expressed as:

8fL
Kf = (14)

2 5
Pu 71; D gc

Where Pu is the density of the fluid at the upstream node of a given branch.

The Darcy friction factor, f, is determined from the Colebrook Equation 9 which is

expressed as:

1 3. Re-x/_-

Where e/D and Re are the surface roughness factor and Reynolds number respectively.

It took 28 iterations to satisfy the convergence criterion. The solutions are shown in

Tables 2 and 3. Table 2 shows pressures, temperatures, compressibility factors and

density in nodes 2 and 3. It may be noted that water was treated as a compressible fluid

and the compressibility factor is very low as expected.
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Table2. PredictedSolutionof Example1at InternalNodes

INTERNAL NODES

NODE P(PSI)

2 0.2290E+03

3 0.2288E+03

T(F) Z RHO

(LBM/FTA3)

0.6003E+02 0.1186E-01 0.6241E+02

0.6003E+02 0.1185E-01 0.6241E+02

Table 3. Predicted Solution of Example 1 at Branches

BRANCHES

BRANCH KFACTOR DELP FLOW RATE VELOCITY REYN. NO. MACH NO.

(LBF-S*2/(LBM-FT)*2) (PSI) (LBM/SEC) (FT/SEC)

12 0.000E+00 -0.214E+03 0.191E+03 0.2L9E+01 0.241E+06 0.183E-02

23 0.764E-03 0.193E+00 0.191E+03 0.I_6E+02 0.644E+06 0.130E-01

34 0.591E+00 0.214E+03 0.191E+03 0.156E+02 0.644E+06 0.130E-01

Table 2 shows Kr, pressure drop, flow rate, velocity, Reynolds number and Mach number

in each branch. The predicted flow rate is 191 lbm/sec and the pump is supplying 214

psid pressure rise to meet the system requirement. The predicted system and pump

characteristics are shown in Figure 8 which also provides verification of the predicted

operating point shown in Table 3.

3OO

i [

250

v

100

0 , ,

0 5OO

t
-..- Pump Clm'_m*sks

Fluld 8ymem Chamaecldcs

1(;00 1500 2000 25_ 3000

Mass Flow Rate (Ibm_)

Figure 8 - Fluid System Operating Point

Example 2 - Water Distribution Network

In Example 1 we analyzed a single line pipe flow problem commonly encountered by

pipeline designers. In this example, we consider an e_ample associated with multipath

systems which are commonly known as flow networks. In general, water supply systems

are considered as flow networks, since nearly all such systems consist of many

interconnecting pipes. A ten pipe (commercial steel) distribution system is shown in

Figure 9.
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Figure 9 - A Schematic of Water Distribution Network

Table 4 - Water Distribution Network Branch Information

Branch Length(inches) Diameter(inches) Roughness
Factor

12 120 6 0.0018

25 2400 6 0.0018

27 2400 5 0.0018

57 1440 4 0.0018

53 120 5 0.0018

56 2400 4 0.0018

64 120 4 0.0018

68 1440 4 0.0018

78 2400 4 0.0018

89 120 5 0.0018

The system shown in Figure 9 is modeled by using 9 nodes and 10 branches as shown in

Figure 1. The fluid was assumed incompressible. Nodes 1, 3, 4 and 9 are boundary nodes

where the pressures are prescribed. Node 1 represents the inlet boundary node. Nodes 3,

4 and 9 are outlet boundary nodes. All of the remaining nodes (2, 5, 6, 7 and 8) are

internal nodes where the pressures are calculated. All of the branches in this circuit

simulate pipes. The length, diameter and roughness factor of all branches are given in

Table 4.

Figure 10 shows a comparison of flow rates between the present predictions and the

Hardy Cross method. The comparison appears reasonable considering the fact that the

Hardy Cross method assumes a constant friction factor in the branch while the present

method computes the friction factor for each branch during every iteration. Therefore, as

the flowrates change the friction factor also changes.
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Figure 10 - A Flow Rate Comparison Between GFSSP and Hardy Cross Method

Predictions

Example 3 - Compressible Flow in a Converging-Diverging Nozzle

In this example we will consider compressible flow in a converging-diverging nozzle to

demonstrate the method's capability to handle compressibility. One of the characteristics

of compressible flow in a duct is that the flow rate becomes independent of exit pressure

aider reaching a threshold flow rate. This threshold value is known as the choked flow

rate and it is a function of inlet pressure and temperature. Flow in a confined duct

becomes choked when the flow velocity equals the local velocity of sound. The purpose

of this example is to investigate how accurately the present procedure can predict the

choked flow rate in a converging-diverging nozzle.

The converging-diverging nozzle considered for this example is shown in Figure 11. The

fluid considered was steam at 150 psia and 1000 °F. The nozzle back pressure was varied

from 134 psia to 15 psia.

0.492 in. Flow

Not to Scale

, 6.142 in.

1.453 in.

Figure 11 - Converging-Diverging Steam Nozzle Schematic

The fluid system shown in Figure 11 was simulated by seventeen nodes and sixteen

branches. Nodes 1 and 17 are the boundary nodes representing the inlet and outlet of the

nozzle. All of the remaining nodes are internal nodes connected in series. The outlet

boundary node pressures were varied to include 134, 100, 60, 30 and 15 psia. Table 5 lists

the model predicted mass flow rates with varying exit pressures. As expected, the mass

flow rate increased as the exit pressure was decreased until the pressure ratio decreased
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below the critical pressure ratio. At this point and below, the mass flow rate remained

constant due to choking of the flow at the nozzle throat.

Table 5 - Predicted Mass Flow Rate with Varying Exit Pressure

Pexit

(psia) m(Ibm/s)

134 0.258

100 0.301
60 0.308

30 0.308

15 0.308

The isentropic flow rate at the choked point was calculated to be 0.303 lbm/sec from the

following relation:

gc 7 2 _.77i-_j
m = A_ro_ Pi,,_l_---_---| - (16)

_/+1

Example 4 - Simulation of the Blow Down of a Pressurized Tank

In the previous examples we considered the simulation of steady state flow in a given

flow circuit. In this example we will employ the capabilities of the unsteady flow

formulation to simulate the process of blowing down a pressurized tank.

Consider a tank with an intemal volume of 10 ft 3 containing nitrogen gas at a pressure

and temperature of 100 psia and 80 °F respectively. The nitrogen is discharged into the

atmosphere through an orifice with a 0.1 inch diameter until the pressure in the tank drops

to 50 psia. The purpose of this example is to determine the blow down time and the

pressure, mass flow rate and temperature history of the isentropic blow down process.

These predicted values will then be compared with the analytical solution.

Tank

V= 10 fP

Initial Conditiom

Pi = 100 psia
Ti = 80OF d=O.l in

Atmosphere
p = 14.7 psia

Figure 12 - Physical Schematic (a) and GFSSP Model (b) for Venting Nitrogen Tank
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The physical schematic for Example 8 is shown in Figure 12(a) and a schematic of the

corresponding finite volume model is shown in Figure 12(b). The venting process can be

modeled with two nodes and one branch. Node 1 is an internal node which represents the

tank.

Analytical Solution:

The differential equation governing an isentropic blow down process can be written as:

/___i) (l-3_)nr d(p/ ) 7.4 _]YgcPiP_(_-_) (17)
p Pi _ 2 (r+w2tr-])

dx pi V

This is an initial value problem and the initial conditions are:

x=0, P=l
Pi

The analytical solution for p / Pi is given by Moody l0as:

(y-1/( 2 _ (, +1)/2('-1) gcPiA x

P - 1+\--,\--,2) 7+1: V
Pi P_

-1)

(18)

The analytical and finite volume solutions obtained b3 GFSSP are compared in Figure

13. Excellent agreement was observed between the two solutions.

1110

90

80-

7O

6O

50

4O

3O

2O

10-

0

0 2O 40 eO 80 1(_ 120 140 160

"rim= (==¢)

Figure 13 - Comparison of the Predicted Pressure History by Finite Volume Method

using GFSSP and the Analytical Solution
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Example 5 - Recirculating Flow in a Square Cavity

Flow in a square cavity is induced by moving its top wall at a constant speed as shown in

Figure 14. The density of the fluid is assumed constant at 1.00 lbm/ft 3, and the viscosity of

the fluid is assumed to be 1.00 lbm/(ft sec). The bottom and side walls are fixed. The top

wall is moving to the right at a constant speed of 100 ft/sec. The corresponding Reynolds

number for this situation is Re = 100.

Due to the complexity of the flow field, an analytical solution of this situation is not

practical. Instead of an analytical solution, a well known numerical solution by Odus

Burggraf l_ was used as the benchmark solution. Burggraf used a 5 l x51 grid in his model

of the square cavity.

u = 100ft/sec

12 inches

[4 12inches _[

Figure 14 - Flow in a Shear Driven Square Cavity

The finite volume model of the driven cavity consists of 49 nodes (48 of which are

internal) and 84 branches. For numerical stability, one node (Node 1) was assigned to be

a boundary node with an arbitrary pressure of 100 psi. A unit depth (1 inch) was assumed

for the required areas. The model is shown schematically in Figure 15. Modeling details

are provided in GFSSP user's manual 7
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Figure 15 - Finite Volume Model of Flow in a Shear Driven Square Cavity

Figure 16 shows a comparison between the benchmark numerical solution and the finite

volume predictions along a vertical plane at the horizontal midpoint. As can be seen in

Figure 16, the results of this coarse grid model cempare very favorably with the

benchmark numerical solution of Burggraf.

£

0.9

0.8

O. 3 _ --_--GFSSP Prediction (7x7 Grid)
"t

0.2 =

I 0 L i _ i

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Dimensionless Velocity

Figure 16 - Shear Driven Square Cavity Centerline Velocity Distribution

22

Draft paper for 37 th AIAA Aerospace Sciences Meeting



CONCLUSIONS

1. The present paper has described a generally applicable numerical method to perform

thermo-fluid dynamic analysis of a fluid system or component.

2. A novel unstructured co-ordinate system has been used; this allows the development

of mass, momentum and entropy conservation equations in a complex flow network

defined by interconnected nodes and branches.

3. The method described here uses a generalized momentum equation which considers

an one-dimensional form for system level calculations. Fluid friction is calculated

from the friction factor or loss coefficients. For component level analysis, the multi-

dimensional form of the momentum equation is used. Fluid friction is, then,

calculated from the local velocity gradient and viscosity. In addition, transverse

transport of momentum is also computed.

4. Thermodynamics and fluid dynamics of the flow is linked through entropy and

pressure. The second law formulation allows the calculation of entropy generation

through heat and fluid flow. All thermodynamic and thermophysical properties are

computed from local values of pressure and entropy.

5. The system of equations is solved by a novel numerical method which is a

combination of successive substitution and Newton Raphson methods. The method

has demonstrated a remarkable stability for both system and component level

analysis.

6. The method has been incorporated into a general purpose computer program which is

extensively being used in many aerospace engineering applications and the computer

program, GFSSP, is available through COSMIC, NASA's Software Technology
Transfer Center.
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APPENDIX - A

Newton-Raphson Method of Solving Coupled Nonlinear System of

Algebraic Equations

The application of the Newton-Raphson Method involves the following 7 steps:

1. Develop the governing equations.

The equations are expressed in the following form:

fl(xl,x2,x3,. ...... xn) = 0

f2(xl ,x2,x3,. ...... Xn) = 0
(A-l)

........ °,° .... °o°°o,...°..°, .... * ......

f n(xl ,x2,x3,. ...... Xn) = 0

If there are n number of unknown variables, there are n number of equations.
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2. Guessasolutionfor theequations.

Guessx_,x_, x 3,. ...... x n as an initial solution for the goveming equations

3. Calculate the residuals of each equation.

When the guessed solutions are substituted into Equation A-1, the right hand side of the

equation is not zero. The non-zero value is the residual.

fltx 1,x2,x3,. ...... x n) = R 1

f t.X, * • *

2t l'X2'X3' ....... Xn)-- R2 (A-2)

..................................... ...

f t.X* q _ ,k
nt l'X2'X3'" ...... Xn)= Rn

The intent of the solution scheme is to correct x 1 ,x 2 ,x 3 ,. ...... x n with a set of
I t !

corrections x 1, x2, x3, ....... Xn such that R 1, R 2, R 3,. ....... , Rn are zero.

4. Develop a set of correction equations for all variables.

First construct the matrix of influence coefficients:

Of I Of 1 Of 1 Of 1

Ox 1 Ox 20x 3 ........ Ox n

Of 2 Of 2 Of 2 Of 2

Ox 1 Ox 2 Ox 3 ........ Ox n

...................... .., .............

Of n Of n Of n Of n

Ox 1 Ox 2 Ox 3 ........ Ox n

Then construct the set of simultaneous equations for corrections:

-Of 1 Of 1 Of 1 Of 1

Ox 1 Ox 2 Ox 3 ........ Ox n

Of 2 Of 2 Of 2 Of 2

Ox 1 Ox 2 3x 3 ........ Ox n

Of n Of n Of n Of n

Ox 1 Ox 2 3x 3 ........ Ox n

''Ix1 "RI_
B I

x2l

,J.Xn .RnJ
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! !

5. Solve forxl ,x' 2 ,x 3 ,. ...... x n by solving the simultaneous equations.

6. Apply correction to each variable.

7. Iterate until the corrections become very small.

APPENDIX - B

Successive Substitution Method of Solving Coupled Nonlinear System of

Algebraic Equations

The application of the successive substitution method involves the following steps:

1. Develop the governing equations:

xl = fl(xl,x2,x3,. ...... Xn)

x2 = f2 (x 1 ,x2,x3," ...... Xn) (B-ii)

.......... . .............................

x, = f n(Xl,X 2,x 3 ........ Xn)

If there are n number of unknown variables, there are n ttumber of equations.

2. Guess a solution for the equations:

Guess x_ ,x_ ,x3,. ...... x n as an initial solution for the governing equations.

3. Compute new values of x 1 ,x 2,x 3, ....... x n by subslituting x_,x_ ,x 3,. ...... x n in the

right hand side of Equation B-1.

4. Under-relax the computed new value:

where ot is the under-relaxation parameter.

5. Replace x_,x_,x3, ....... x n withthe computed valu_ of x 1 ,x2,x3,. ...... x n from

Step 4.

6. Repeat Steps 3 to 5 until convergence.

26

Drat_ paper for 37a'AIAA Aerospace Sciences Meeting


